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Abstracs

A new metric which we call the “intrinsic metric® is introduced cn the states F° of the
generalized logic of quantum mechanics. It is shown that every automorphismon % is
an isometry. A norm can be defined on the linear span & of & which reducss to the
intrinsic metric on 5. If X is the completion of £ then every auiomorphist on ¥ has &
wsigue extension fo 2 linear isometry on X. A comparison is ads between these ms}.z}iu
an] those of M. Baonil.

~ In a'recent paper . Kronfii { 19”0* introduces 8 memc p on the set of
states & for a quantum system which he calts the ‘natural metr"" He
“shows that p can be extended to a norm on the closed linear span X of ;-
and then attempts to show that any automorphism of & can e exténded
to a centmuom unit normed linear apermor on X. Using this fast fesult
‘he is able to prove the existence of Moller's wave automorphisms in abstract:
scattering theory (Kronfli, 1969). Unfortunately there seems 1o be a gap
in one of these proofs which leaves the validity of these resultsin ques tion,

After discussing Kronfli’s results, we introduce a different: metric, ths;
“intrinsic metric’, which we fee! may be of more physical significance than
the natural metric. We then prove stronger results than Eironﬁl’s in wmzs .
‘of the intrinsic metric.

2. Kronfli’s Results

Following Kronfli we let ¥ denote the orthomodular o-lattice corre-
spondmg to the generalized logic of a qu ﬂntum system. We denocte the set”
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of {proper) states on & by . The natural metric on & is defined by
pp.q) = sup{lp(a) ~ g(8)|: ac &), p, g€ &. The proof of the following
fem:a is similar i0 part of Kronfii's Theorem 3.2 {Krontii, 1970} except
ours is more complete since we justify the interchange of the limit and
surnmation.

Lermzmn 2 1:{&, p) 15 2 complete meiric space,

Prouof: 1t is clear that (¥, p} Is a metric space. To show completeness let
#; be a Uoauchy sequence. Then p,{a) is 2 real Cauchy sequence for any
ae 2 and hence comverges to a number p(a). Clearly p(1) =1 and pla) = 0
for all & € &. To prove countable additivity of plet g, be a disjoint sequence
in % Mew

PV ) =limpAV g} = timlim 3 pfa)
I Foron B Sl
We now show that

tm 3 pia
230 fml

exists uniformly in j. Let >0, Then there is an integer N such thai
i I > N implies |pfa) — pfa)] <&/3 for all ae L. Let M be an integer
such that 2 = M implies

g

}}: pa)—p iV "'55}% < forje=i,2 N
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Nowforn: M, j> Nwe have
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Using 2 standard theorem {Dunford & Schwartz, 1958, page 28}, we can.
interchange limits to obtain

PV @) =limlim 3 pfa)= 3 p(a)
pa Foro ful Ll .

Thus pe &. To show p,—» p in the p metsic let k — « in the inequality
ipid@) —pul@) <c/3forallas 2, i, k>N
Let X, denote the set of signed measures on & and let XS X be the
-closed linear span of &. Define a norm on X; as follows:

izl = sup{p(d): @ € L -+ sup {«-—p(q}; ae ¥}
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Kronfli shows that (X, ) is 2 Banach spacc and ¥ is 2 ciosed convex
subset of X’, with the worm inducing the natural metric. The Banach
space (X, |} is called the space of generalized states. ¥ we define the
partial ordering p<g whensver pl@) <gfe) for all g then #t B
easily seen (Kronfli, 1970, Theorem 4.2) that X is an ordered Banach space
with closed, normal, positive cone C={p e X: p = 0. However, it is now
erroneously concluded that C has nonempty interior. We now show that
this need not be the case and, in fact, is never the case for most quantum
SYSIEDTS.

The set & is said to be sfficient if forevery 0# ae & thereexists pe'$
such that pl@)=1; & iz order determining if pla)<p(b) for all pe &
fmplies o <5, In guantom mechanics & 15 ssually sufficient or order
determining or both (Mackey, 1963; Varadarajan, 1968; Jauch. 1968;.
: Guudm 1970). In particular for the usual Hilbert space quantum n*efh«
anics, & 18 sufficient and order d@iﬁrmmmg Aiss except for very stple
finite systems.such as those in which only spin is considéved, the generalized
logic % has an infinite disjoint sequence,

Lemma 2.2 If & has an infinite disjoint sequence and & is sufficient or
grder determining, then the cone C in (X, [} has no intenioy points.

Froof: H xe, thew v is 4 non-negative bounded measure on 2. If
a4F 0 i=1, 2““, is an infinite ‘hmomt sequence, since x(V @) =3 x(a;)
< oo, wemust have x{g, )~ 0as i «. Thusforanye > OthereisO# ge ¥
such that x{a) < g/2. Now suppose & is sufficient Then thereisage
such that g{gj=1. Let y=x—3zg. Then y= X. Now gl = x(a) eq(a)
< —¢f2 s0 y¢ Cand yet x — yj=leg! =2 Thus x iz not an interior point
of C. Next suppose & is order determining. Then there isa p € & such that
pldy>1 since if r(a}<% for all r €& we would have r(d’) » 4 for all
re ¥ and a<a which is impossible. Now z=x—egpe X but z{g)=
x{a\-—w{a)<(a 2y~ {e/2y=0 50 z€ C. Again [x—zi=lpl=¢50 x Iz
not an interior point of C.

Since Kronfli’s Theorem 4.2 has a gap, the validity of his Theorem 4.3
which states that every 4 € Aut(¥) can be exiended to & unit DQI’m"d
linear operator 4 on X, is unresolved. Also his Theorem 3.1 (Kronfli,
1969) which relies upon Theorem 4.3 is now unproved.

We now give a sufficient condition under which Kronfii’s main results-
are valid. An automorphisra 4 € Aut(¥} is implemented if there is an
automorphism 4 € Aut (%) such that (dp){a) = p{dz) forall a e &. In the
usual Hilbert space quantum mechanics every state automorphism is
implemented.

Lemzra 2.3: 1 A € Aut(&) is implemented then A4 hasa unique extensuon .
to an isometry of X onto itself.



“Proof - "We extend 4 by linearity to the linear span E of & and denote the

exiension by 4 also. Now it is easy to see thai every clement of K has the
formx=ap—fig;o, B0, p.sed. Now

fidxfi = lledp -~ BAgll = sup{(aAp)(a) — (BAg) (a): a & &}
i +sup{{fdg) {a)— (aAp)(@):ae £}
= sup{opl(da) — Bg{Any: a € %) + sup{ Bg(An) — up(da): a € 7]
==sup {ap{a} -- Bglay: v & T} +sup{fgla) —op(a): 2 € &L}
=
56 A4 is an isometry op E. The rest of the proof is now easily carried out.

Unfortunately one can give examples of state automorphisms that are
ot Implemented so Lemma 2.3 is not universally applicable,

~3.-The Intrinsiv #eiric

fp,peFand<cicithen (I — A)p+ Ip, represents 2 mivture of p
and p, with (1 — 1) parts p and 2 partsp,. If p, g € & are “nearly the same”
one might expect to be able to obtain p from ¢ (and g from p) by mixingg
with 2 gmall amount of some other state. Conversely, if there exist p,,
gy €& and asmatinumber G < 4 <t enchthat {1 — Dp -+ Apy = {1 — g+
Agy then pand g are close in some sense and the parameter 4 is a measure
ol their distance apart, Mothvated by the above, «» define

o(p,)=mf0<ic: (- Lip+ip, =1~ g+ 45, p,.5: 85

Notice, since 3p+ 1g =1+ 1p we have 0 < o(p,g) < 1. It turns out to be
more convenient to make a change of scale 2nd define the distance between
pandgby d(p,g) =olp.g}[1~ c{p.g)] . 50 O < dip.gi< L.

Lemma 3.1 0 and d are metrics on & and tp(p.g) < olp,g) < d{p,g).

Proof: It is clear that ¢ ’and 4 are non-negative, symmetric and that
o(p,p) =d(p,p) = 0. I ¢(p,q) =0, there exist i, 0, p,, g; € ¥ such that
(A—-App+4p =0~ i)g+ 44, 4ifa €%, then

{p@) — 9@ < [Ll}p(@) + 9@ — pl@) — g} < 44| » 0 @i w
Hence p(a) =g{a) and p =4, If d{p,q) =0 then o{p,g) =0 350 p=g. To
" prove the triangle inequality suppose

O<ldy A<l and  (1=2)p+Ap=(1 —A)s+i.s,

and
. (I—A)s+ 45, =01~ A)g+izq;
Letting
Qo=+ A =20 2)(1 = A Ayt
and

Ay = A0 — )y + 2p —~ 24, 40
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we see that § < dg, 43 < 1 and after some algebra we find

U —A)p + Aol(i — 3)py + Aam] = {1 — do)g + AJ{1 - A3}y + Aag]

AelBcdgl:(1-Dp+ir=(0~A)g+ it,7,1€ 5}

Bince lg(i syt 21(1~—11)""+12(i-—i;} wchmd(p zf}<:z‘{;p,s)+
dizgiioralip, g, 5 F. The mangm inequality for ¢ follows In a similar
way using the fact that 4, < A, 4+ 4;. Tinally for apy £> 0 there exists
0<d<] and p;, g, € & such thet (1 Ap +Jp, = (1~ A)g+ ig, and
v(p.g) <i<ov{p,g)+e Thenforanyae &,

| (@) — g{e)] = {ap(a) + Agy(a}— Ap,(a) — 2g(@)] <43 <do(p,q)+ 4

Hence p(p,q) < 40(p.9).
We call d the intrinsic metric for 5. This metric is physically motivated

and is determined by the geometric structure of the states alons without
Telving on the particular form the states tale. As we shall see, this meiric
ims_szgntﬁcant regularity properties as far as automorplisms on & are
concerned. in another paper the author plans to compare this meiric with
other conmonly used metrics. In particular we shall show that the intrinsic
metric 5 equivalent ¢ the trace metric used by Jauch, Misra & Gibson
{1968) in their Iatest study of seattering theory.

Lewmmz 42 H £ & Aut{F}) then 4 is an isometry in the metric spaces
(#.0), (7.4).

Progf: For p,g e & we have
o(p,q) =inf{0 <A< 1: (1~ Dp-+Apy= (1 - g+ g, b0y € &}
=inf{0 <2< 11 A{(1 - Hp+4p )= A1 — Hg+ A7) 7. 7: €5}
=inf{0<d<1: (1 - Ddp+ ddp, = (1 —~ HAg+ Adg,, 1., € &}
=infl0<igl:(1 —})Ap Apy =1 —2jAg+ gy, p1,q: € &}
= o(4p, Ag)
1t follows that d(p,q) = d(Ap, Ag).

As before we let E be the linear span of . Now every xe E admits a
representation x = ¢p — dg where ¢, d> 0, p, g € . Define

|x| = inf{max(c,d): x=cp—dg; c,d > 0: p.g € &}
Theorem 3.3: (E,|-]) is 2 normed hneax space such that ig—ql=4d(p.g)
forallp,gqc 2.
 Proof: Clearly |x| >0, |0] =0. To show |ax|=e||x| for all xe R,
X € E we consider two cases. If « > 0 then
Jax| = inf{max (¢, d): ax = cp — dg; ,d> 03 p,g € &}
= inf{max (xc,ad): x =cp—dg; c,d» 0; p,g € &}
—afx) = o]l
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Wo<{then
}zx{ =infimax (e, d¥: x=¢p—dg; 0, d >0, p.g £ 7}
= inf{max {(~ur,—ml): x=dg—cp; e, d2U;p,0 5
=—alx] = [a]}x]
To prove the triangle ineguality, suppose x,, x; € E If x, = ¢;,p, — dyq,
and x; = ¢, p; — dyp, then we hawe
Xy + %Xy = (g5 + ) fees + &' py + ool + 22 s
—dy + &) d(d, 4 Aoy gy + doldy + o) 4]

where the expressions in square brackets are in 5. Then

I2, + %3] = inf{max (¢, d): X, + x; = cp — dg; ¢,d > 0; p,q € F}
<inf{max{c; + &5, &y +d3): Xy = ¢, py—di 415
Xy =Py d,z‘?z}
mlﬁf{m i_L; ug; ‘ ﬂi&x(c;,dl):x1=c1p1—d1q1,
Xy == €y Py — atfn}
= inf{max (’7295513‘ Xy =y py—digy; €14y =6,
P21q €5} “;’ inf{max (c;, d5): Xy = C2 02 — 42423
e d: >0, 79,8575
= xg| + |2]
We now show [p—g|=4d{p,q) for all p. g &. I p~g=cp, ~dg;
¢, d>0;p,, qle,S” then 0 = p(1) — (1) = cp,(1) — d7,(1) = ¢ — d. Hence _
all representations of p— g are of the form p —g.=c(p; —g,) for ¢>0;
P19 € F. Now :
o(p,q)=inf{0<i<: (1 = Dp+ip, =1 “/)‘H”«‘hs P1,91 €S}
=inf{0<i<lip—qg=21-0)"(g —p) P91 €&}
=if{elc+ 1y e 0 p—g=clgi—p)i P01 €}
=inf{c>0:p—g=clgy —pR}linf{c > 0:p —g=clg —pJ} + 1}
=|p—qlllp—gl+ 1T
Hence p{p.g) =s(p. )l —o(p)]*=|p—q|. We next show that
|pl=1 for all p= &. Indeed, if p=cp, —dg,; p1, g1 € &1 ¢, d=0; then
d=p{}=c—d. Since d 0 we have e > 150 |p| > 1. But p=p—0qg so
]p] = 1. Fmaliy suppose {x| = Oandx-cp dq. Then™
0=|x| = |cp — dg| > |lep| — |dgi} = el o] - dlg]] = |e — 4]
soc=4d. Hence
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Pari of Theorem 3.3 could be proved miore easily by noting that |+ is
the Minkowshi functiona! (Peressini, 1567 of the convex, balanced,
absorbing set D={p-dj:O0<r,d<;p.geF s E However, ovr
proof is independent of a knowledge of Minkowshi functionals.

If we let X be the completion of the metric space (£, [} then (X,|-)) is
the Banach space of generalized siates.

Theorem 3.4: W A& Aot (5 then A has 2 unigue extension 1o a linear
isometry 4 on (X.]).

Proof : We show that 4 has a unique extension to an isometry on (£, |-}
and since E is dense in X the result will follow. MNow any x ¢ £ admits a
representation x=cp—dg; ¢,d>0; p,ge&. Define Ax = cAp — dAg.
To show 4 is well-defined suppose also that x =¢,p, —d g, ¢, d; > 0;
Pi.g, €. Then ¢—d=x(1)=c¢;—d; and hence (notice that ¢, -+,
&~ dy > 0 unless x =0 in which case the result is trivial)

cle+dyip+detd)y g =cde,+d)p,+d{e, +dy g
Then :
ele+ Ay Ap i dde b dy Ay = ooy dV Apy A 2 )Y Ag

1t follows that cdp — dAg = ¢, Ap, — d; Ag, and A is well-defined. Finaliy
for x & £ we have
Ixl =inf{max{c, )i x=cp—dg; ¢, d>0:pge &}
=inf{max{c,dy: x=cA"p—~dd™'¢;c,d > 0; p, g ¥}
= inf{max(¢,d): Ax = cp~dg; c,d > G, p.ge S}
= | Ax|

It follows from Lemma 3.7 or Theorem 3.4 that if we define the asymptotic
condition in terms of the intrinsic metric 4 then Krondi’s Theorem=31—
{Krontli, 1969) holds for 4. Sirice; as mentioned curher, the intrinsic metric
is equivalent to the trace metric in Hilbert space quantum mechanics, this
generalizes a resuly of Jauch, Misra and Gibson.
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